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Abstract

Automation in experiments carried out on animalgestng more and more important in research. Comp
take over laborious and tinmnsuming activities like recording and analysimgges of the experiment sce
The first step in an image analysis is finding dstinguishing between the observed aninaaid then trackir
all objects during the experiment. In this papenfwacking methods are presented. Quantitativecaraditative
figures of merit are applied to confront those rodth The comparison takes into consideration thel lef
correct object recognition during different distaniges, the speed of computation, requirements g foame
rate and image illumination, quality of recoveringm occluded situations and others.
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1. Introduction

A great number of biological and medical experirsecdrried out on animals are now
being automated. There is a great number of conialesystems that offer recording,
analyzing and elaboration of results of experimektsst commonly, the subjects of studies
of those systems are animals’ motor and activitycfions. Parameters such as velocity, time
of activity or time spent in a defined area are snead. Although the availability of such kind
of systems is constantly growing, there are stlltools for automatic analysis of animals’
behavior. The reason for this lies in the complexit a living organism’s behavior, in the
difficulty in defining features of specific actioand recording all details needed on a
computer.

In advanced analysis, the first obstacle to overcgsrfinding and discerning the objects.
Next, tracking the position of recognized indivikuan consecutive video frames is needed.
To facilitate these operations some conditions fiiaionless and contrastive background or
different colors of objects can be required. Howgws@tuations that cause problems in
computer analysis are inevitable. One of thoseasduos is the contact of two or more
individuals in the case of fight, sniffing or bitjnit is problematic for computer application to
distinguish between bodies of each connected olgadt to track each individual after
separation. Sometimes one object is covered byhanathich brings the next problem:
tracking an object that is not directly visible.

In this paper a review of some of the most poptiacking algorithms is shown. The
choice of described algorithms was imposed by tbgrek of usefulness or meeting the
assumptions of a specific method (for example:ainand Gaussian model in Kalman
filtering) from algorithms not requiring earlier@ervised learning presented in [1]. Methods
based on shape or silhouette matching were notruramesideration by reason of a large
variation of rats’ body shapes. Also algorithmst tbperate on texture were rejected due to
too low image resolution.
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Testing was carried out on the recordings from @asdnteractions test of two male rats
performed in the Department of Animal Physiology thé University of Gdansk. The
description of a kind of social interaction teshdae found in section 2.1. All presented
methods are described in section 2.2. Each of tisetested and marked according to eight
parameters described in section 2.3. Section 3tatmn the results of experiments. A
discussion is presented in section 4 and congigsioe contained in section 5.

2. Materials and M ethods
2.1. Social I nteraction Tests

Social interaction tests are often required befemious medical and biological
experiments conducted on rodents. Their aim iseterchine the level of the domination and
social status of each specimen in the group. Teside for the purpose of the experiment
described in this article were carried out on theid of the Albonetti and Farabollini method
[2]. This method discerns four types of behavicaggressive, defensive, ambivalent and
neutral. The aggressiveness factor is computedhemasis of the number of behaviors from
each category observed during 15 minutes of the AgEmals were tested in pairs in the
round robin system. All specimens were males ofséime age. To differentiate the tested
individuals, one of them was painted red. The atimaere put in a cage made of plexiglass
and recorded by a camcorder situated above. Aterh were earlier accustomed to the cage
one by one.

The IginVision IQEye 705 network camcorder was uledecording. In order to provide
an easy separation of the objects of interestb#ioiground was dark to form a contrast with
the white rats. Two different frame rates (10 afdffdmes per second) and three different
levels of lighting (poor, medium and strong) werged during recordings. The picture
definition was set to 320x240 or 640x480 pixels.

2.2. Tracking Algorithms

The first step of an automatic analysis of animalshavior is isolation of the object of
interest from a frame of the recording. The higlocaontrast between the animal and the
background enables the simplest object detectiathode- thresholding. The color space of
the picture is changed into two colors (most ofttatk and white) according to the specified
level of the threshold. The object is marked witie @olor while the background with the
other. Another method to detect the animal is araabon of the recorded frame from a
reference image (image of the background), whiglte in detecting differences between
these two images. The object found in the imagellghoe then tracked through all frames of
the recording.

Tracking is much more complex than detection. Thare several popular methods
concerning tracking.

2.2.1. Continously Adaptive Mean-Shift

The Continously Adaptive Mean-Shift (CamShift) isilbon the Mean Shift method [3, 4].
The Mean Shift algorithm is a method of findingdbextrema in the density distribution of a
data set and shifting the fixed window accordingtite computed centre of gravity. Each
video frame is converted to a color probabilitytdimition image of a tracked color histogram
model.

The algorithm runs as follows [5]:

a. Choose a search window:
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— its initial location;
- its type (uniform, polynomial, exponential or Gaas3,
— its shape;
its size.
Compute the window’s (possibly weighted) centrenafss.
Centre the window at the centre of mass.
Return to step b) until the window stops movingcading to the maximum number of
iterations or epsilon change in the centre shiftveen iterations).
Fig. 1 shows a schema of the described algorithm.flame on the left displays an image
with window centred in the centre of mass. A movetr@ the object causes a shift of the
centre of mass and respectively of the window.

Bradski [6] introduced CamShift to track the hunfiace based on the skin color. It differs
from the Mean Shift in adjusting the search windowgize, which allows for the tracking of
objects whose size may change during the videoesegu

oo0o

Fig. 1. A schema of the Mean Shift algorithm.

2.2.2. Optical Flow

The Optical Flow (OF) is a vector field that debes changes of one frarmemparing it to
another in a sequence of images (Fig. 2). This ogettetermined in [7, 8] tracks each pixel
according to its brightness through successive dely defining the vector of displacement
between individual images.

Fig. 2. An example of creating an OF image from tmages determining a movement.

Let the image brightness at the pofrf y) in the image plane at timebe denoted by
1(X,Y,b).
The algorithm assumes that:
a. The brightness of every point of a moving or statifect does not change in time
I(x+dx, y+dy, t+dt) = I(x, y, 1)
b. The velocity of brightness varies smoothly in aadee part of the image. In practice, this
means the temporal increments are small relatitieetdrame rate, motions are small from
frame to frame.
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¢. Neighboring points in a scene belong to the samiaceiand have a similar motion. The
OF method can be used only for objects of a fisite undergoing motion or deformation.
There is little hope of recovering the velocitiésmall points.
The first assumption demands stable lighting. Tleeosd assumption imposes a
requirement on the camera frequency of capturiagnés.

2.2.3. Particle Filtering

Particle filtering (PF) (also often called Conddimzal algorithm) was developed to track
cluttered objects and has been described in litexg9, 10]. In general, it is a sequential
Monte Carlo method based on point mass represemnsatif probability densities (particles).
The basic idea is the recursive computation ofvegleprobability distributions describing the
object’s configuration using the importance sampliand approximation of probability
distributions with discrete random measures.

The PF algorithm works iteratively as follows [11]:

a. Initialize the particles and compute their likeliftbdistribution.

b. Sample the current set of particles to generateva particle set using the sampling
algorithm.

c. Given the new observation, generate the new sasgileby applying the transition
function and update the weight of each particle.

A common problem with the conventional algorithnR¥ is the degeneracy phenomenon,
where after a few iterations, all but one partieid have negligible weight. This has been
tried to be solved by replacing Sequential ImpargaBampling (SIS) [12] by other methods
such as the Sampling Importance Resampling (SIR) {te Auxiliary Sampling Importance
Resampling (ASIR) [14], the Regularized ParticleeFi(RPF) [15] or the Mean Shift [16].

The Mean Shift Embedded Particle Filtering combilee PF and the Mean Shift
algorithms (precisely CamShift) [16]. The Mean S$hitration based on observation of
density is applied to all samples after those samplere measured by observation. As a
result, each sample will converge to a nearby lowadle of observation distribution. Many of
them will gather in the same local maximum, so thean shift embedded into particle
filtering can use fewer samples than other parfittiering algorithms. Another advantage is
adaptability of the color model of the tracked abjie deal with color variation.

2.2.4. Active Contours

The Active Contours algorithm (AC), also called dkrs”, was introduced in [17] as an
energy-minimizing spline guided by external coristrforces and influenced by image forces
that pull it toward features such as lines and sdgeergy of active contours is the sum of:
internal energy of the spline due to bending, imagergy caused by the image forces
(attracting the snake to lines, edges and ternong}iand energy of additional constraints
caused by the external constraint forces. The dinthe AC is to find a location that
minimizes energy. Snakes are able to find edgels edise by attracting the spline to the
largest image gradients. Once a snake finds aedkefature, it tracks it during its motion by
tracing the same local minimum.

2.3. Parameters

In order to draw a comparison between the aboveiomad tracking methods, eight
parameters were elaborated:
a.Optimal light conditions — the level of light appriate for the best tracking by each
algorithm. The choice is made from among threekiofdight (Fig. 3):
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— poor, overhead,
— medium, diffuse, overhead and side,
— strong, point-source, side and overhead.

Fig. 3. Examples of levels of light: a) poor, b)dnen, c) strong.

b. Average time of analyzing one frame — average dipgrdime of an algorithm for one
frame of a movie of 320 pixels width and 240 pixetsght, written as the avi file. It is
measured in milliseconds. The calculations wer@eazhaiout by a computer with an Intel
Pentium 5 procesor, 2.80 GHz and 1,00 GB RAM.

c. Initial (input) parameters — the parameters necgdsebe entered by the user for analysis
initiation.

d. Resultant (output) parameters — the parameters/estas a result of analysis, the way of
presenting the outcome of tracking.

e. Conformity of tracking under different frame ratenditions — the deviation of tracking a
fixed object in recordings (parameters of trackéing normalized to a maximal value) with
different frame rates computed according to (1)

0ONf, 161 = | -3 (o = 07 )

where:u — mean value of the parametdr- number of observations,
Xconf— NOrmalized values of evaluated parameters ih gawvie calculated from (2)

X
%] =—
Xconf[ ] ma

*100% @)

al

wheremax, — maximal value of the evaluated parameter (32&fooordinate or width and

240 for y-coordinate or heighty, — subsequent values of the evaluated parameteacin e

recording.

The estimation of tracking conformity under differérame rate conditions was carried out
on the identical recordings of different frame saf80, 15, 10, 5 and 2.5 fps). The recording
lasted 50 seconds (30 fps), was poorly lightedsimmved one white and one painted red rat.

Each algorithm had different parameters describriacking:

— Camshift — x- and y-coordinate of the centre ofttheked box (area), width and height of
the tracked box, all parameters counted separételthe selection of the red and white
rat,

— Optical flow — x and y position of tracked poinggrameters counted for two points (one
situated on the white and one on the red rat),

— Particle filtering — x- and y-coordinate of the trenof the tracked area, width and height
of the tracked area,

— Active contours — x and y position of the centranpof the contour, size of each contour.
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f.

The quality of tracking during light changes — téat for light changes defined on the
basis of observation of tracking objects by eadajorithm using the recording of 10

frames per second, 320x240 pixels containing smiigithenhancement. Fig. 4 shows the
changes of the mean value of all pixels in the greale during light enhancement and
back to the initial lighting level.
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Fig. 4. Mean value of pixels in recording contaglight changes

Tracking analysis during disturbances — a propodi analysis of recording containing
three types of disturbances:

an extraneously large object in the field of ing¢re the hand of the researcher putting the
second rat into the cage;

an extraneously small object beyond the field dénest — the hand of the researcher
moving the computer mouse;

changes of all pixel values, additional reflectiens sheet of glass pulled over the cage to
cover it.

The analysis contains such parameters as:

Atc — the percentage of the total time spent oneobitracking,

Atp — the percentage of the total time spent ortlyparoper tracking — tracking only a
part of the object, tracking more than the objbeckground, another rat),

Adic, Adc, Adic — the percentage of the disturbance (respectivatge object, small
object, pixel changes) time spent on correct tragki

Adip, Adp, Adsp — the percentage of the disturbance time spepadty proper tracking.
The computations were made using the poor lightedienlasting 20 seconds of 10 fps

frequency and 320x240 pixel resolution. The duratibeach disturbance:

— the extraneously large object in the field of araly- 5.75% of the total time of recording,
— the extraneously small object beyond the fieldraflgsis — 7.35%,

— the changes of all pixel values — 13.9%.

h.

Time and degree of recovering from occlusion —tifme of retrace of tracking the red rat

after covering it by the white rat to the completedrrect identification (counted from the

first frame of the side exposure) and the timeht® first correct object detection, the

percentage of the body part correctly recognizedhm first correct detection after

uncover. The exemplary incident of objects impositlasted 6.73s and had five stages
(Fig. 5): snout contact — 0.2s, head covering -34,.8omplete covering (except tail) —
0.4s, side exposure — 0.3s, side contact — 4s.



Metrol. Meas. SystVol. XVIII (2011), No. 1, pp. 00-00

a) b) c)
d) €)

Fig. 5. Stages of covering: a) snout contact ,dadhcovering, c) complete covering, d) side expasirside
contact

The observation was carried out on a recording With following parameters: 30 fps,
resolution of 320x240 pixels and poor light.

3. Results
3.1. Optimal light conditions

Table 1 describes the quality of tracking undefedént light intensity for all methods. The
best results of tracking were obtained for the plagitt, largely due to lack of reflections
which cause misidentification. Low quality of tréwg by the OF in the strong and medium
light is also induced by the irritability and reestbness of rats in the light environment (they
move more quickly and thus break one of the opfloal assumptions), that is characteristic
of all rodents. Tracking by the CamShift and the iRRhe poor and medium light gives
similar, satisfactory results; strong light disteinproper identification. AC analysis strongly
depends on the image brightness, only in poor lighibrks correctly.

Table 1. The quality of tracking under differemht intensity for all algorithms

CamShift | OF PF AC
poor No reflections, very small The point situated on the Finds the Works
light difference in brightness | white rat was migrating | objects correctly  correctly

between the objects and from one rat to the other
background during body contact
medium| Too bricht light cause: | The point was migrating t Finds the Red rat is
light | reflections of objects in the the other rat, reflections| objects quite | darker than the
side glass pane which are  and the background well background
very rarely mistaken with
the object itself.
strong More reflections more | The point was migrating to Light Very light
light | often acclaimed as part gf the other rat, reflections| background, background,
the object and the background noisy image noisy image
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3.2. Average time of analyzing one frame

The average operating time for each algorithm dswvshin Table 2.

Table 2. An average time of analyzing one framedgh algorithm

CamsShift OF PF AC
20 point: | 400 point: | 1 objec | 2 object

38 51 424 499 1497 609

Average time of analysing one frame
[ms]

For the OF the results depend on the number dfdthpoints: the more points are to track,
the longer the time of analysis. A similar case banobserved for the PF. Two objects of
interest demand more time for operating (1497 imes) bne object (499 ms).

The results indicate that the CamShift algorithrthes quickest way to track a rodent in the
cage (38 ms). The OF for a small number of pomi@so fast (51 ms — 20 points). A greater
number of the tracked points (400) increases the tof analysis to 424 ms, which is
comparable to tracking one object by the PF (499 frise AC algorithm requires 609 ms to
analyze one frame of the recording. The most tioessaming method is the PF for two
objects (1497 ms).

3.3. Initial parameters

The OF and CamsShift algorithms require respectivbly initial points and initial area
(Table 3). Patrticle filtering and active contoucsrtbt need any initial parameters.

3.4. Resultant parameters

All the resultant parameters are shown in Tabl&H# results of the CamsShift and the PF
algorithms are given in the form of an area: cepet, width and height of the tracked
region (box). The OF produces as a result the ipasitf the tracked points, whereas the AC
evaluates the position of each point for each agmnto

Table 3. Initial and resultant parameters for lgjbathms

CamsShift OF PF AC
Initial parametetr aree point / point: - -
Resultant parameters area point / points area tgoircontours

3.5. Conformity of tracking under different frame rate conditions

a) CamsShift

Table 4 demonstrates the results of tracking timéreeof an object under different frame
rates for the CamShift. The coordinates of thereeot the tracked area are very similar for
all values of the frame rates (cenf 3.13% and 2.92% for the white rat and 3.81% and
2.08% for the red rat). Fig. 6 displays the valoégixels (in grey scale) of an x- and y-
coordinate of tracking the box centre and the wialtlll height of the tracking box under
different frame rate conditions by the CamShifttfue red rat. Only the 2.5 and 15 frames per
second frequency occasionally diverges from ottegfuifencies in tracking the centre point of
the box (Fig. 6a, b). The width of a tracked arades the most (copf= 19.55% for the white
rat and 12.49% for the red rat). Values of the lildtr 2.5 fps are visibly greater than other
results (Fig. 6¢). The diversity of height of acked object is at a middle level (8.02% - the
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white rat, 4.3% - the red rat) when comparing vather values. Though, Fig. 6d shows a
significant difference between the results forfpdband others.

Table 4. Conformity of tracking under differentrfra rate conditions for the CamsShift

Camshift | Conf of x-coordinate| Conf; of y-coordinate| Conf; of width of | Conf; of height
of area centre [%] of area centre [%] area [%] of area [%]
white rat 3.13 2.92 19.55 8.02
red ra 3.81 2.0¢ 12.4¢ 4.2
300 160
250 140
=N - =
g 200 W Lt \\ i £ 100 A ,/ \
|
é 150 /%\1 ?§ 80 [\*\ r\lx’l ‘%VA A Fada®)
il Sa || ol ATV
% 100 | > 1 M \f/
N, S| e
o\ I
20 I
° 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103109 115121 ° 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103109 115121
frame number frame number
[—25fs —5fps  10fps — 15fps — 30fps [—25fs —5fs  10fps — 15fps —30fps
a) b)
160 400
140 350 M
120 / A 300
100 - / 250
§al [\ /A L] 2.
0 VWAV NI S
AN NN AT WWEY N NEAYA W NI
Ve A RS Tk AN T
20 17 50 U
Il /
0 0
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115121
frame number frame number
[—25fs —5fps  10fps — 15fps — 301fps | [—25fps —5fps  10fps — 15fps — 30 fps |
c) d)

Fig. 6. Pixel values of a) x-coordinate of the kiag box centre, b) y-coordinate of the tracking lsentre, c)
width of the tracking box, d) height of the tradibox under different frame rate conditions for teé rat by
the CamShift.
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b) Optical Flow

The conformity of tracking under different frameeaonditions for the OF is between
5.68% and 8.85% (Table 5). The results are nowvam as those achieved by the CamShift.
Therefore, it is hard to find frequencies that gigantly differ from others. Only the y-
coordinates of 2.5 and 5 fps draw a shape distingtrig. 7).

Table 5. Conformity of tracking under differentrfra rate conditions for the OF.

OF Conf, of x-coordinate of point [% Conf, of y-coordinate of point [¥
white rat 7.35 5.68
red rat 8.85 8.23

c) Particle Filtering

Particle filtering revealed the worst abilities @milarity of tracking through all the
measured frame rates. The conformity of trackiregdtea of the centre equals from 14.34%
to 31.52%, and that of the dimensions of the asetam 12.16% to 14.49%. Such poor
results are in part caused by prediction of the frexne in the PF algorithm. After changing
the frame rate, the prediction is also changed.

Table 6. Conformity of tracking under differentrfra rate conditions for the PF

PF Confj; of x-coordinate| Conf;, of y-coordinate | Conf; of width of | Conf; of height of
of area centre [%)] of area centre [%)] area [%0] area [%0]
White rat 31.52 20.34 13.72 14.49
Red rat 25.7 14.34 12.16 14.4

d) Active contours

The AC is the most unresponsive to the frame ragages algorithm. The conformity of
tracking the contour centre is below 1% (0.97% tf@ x-coordinate and 0.62% for the y-
coordinate, Table 7) and tracking the size of contttomes to 2.99%. Fig. 8 demonstrates
plots of the contour size for all frequencies @& frame rate. It can be observed that all values
are almost identical for most of time. There aréydwo cases where the results diverged
(Fig. 8). The first one arose due to a sudden asgef the contour size for 2.5 fps, a moment
later a similar rise appeared for 2.5, 5 and 10R&datively small changes of the contour size
can be caused by stretching or cringing. A suddigh lncrease is often the result of
integration of two separate objects.

700

600 A\

SAN ]
ZOM\VIW, R

100

size of contour

LY DR R R R TR PSP

frame number

| —25fs  5fps  10fps — 15fps — 30fps]|

Fig. 8. The values of exemplary contour size unliféerent frame rate conditions by the AC.
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Table 7. Conformity of tracking under differentrira rate conditions for the AC.

AC | Conf; of size of contour [%] Conf; of x-coordinate of | Conf; of y-coordinate of
contour centre [%] contour centre [%)]
2.99 0.97 0.62

3.6. Quality of tracking during light changes

Light changes have no impact on tracking by the Slsift (Table 8). The OF lost all the
tracked points in one frame. The PF and the AGCnamking on binary images. This kind of
image is most often acquired by performing a thoeslat a fixed value, which is the reason
why the PF and the AC are sensitive to changedq®flight. The PF finds more objects
whereas the active contours increase the numbegrdadye the borders of contours.

Table 8. Influence of light changes on trackingglgh algorithm

CamShift OF PF AC
Influence of light | No impact | Almost all of tracked More objects detected More objects detected
changes on tracking point lost the objects during light phase of| during light phase of
in 420 frame recording recording

3.7. Analysis of tracking during disturbances

Table 9 demonstrates the results of analysis ardétg containing disturbances featured
in section 2.3., subsection g) .

From among all the tracking algorithms, the CamShkifthe most accurate (91.37% of
correct and 4.79% of partly correct tracking in @at). A small object located near the field
of interest does not disturb proper working {Ad 100%). Also putting the glass in front of
the camcorder has a minor effect on computatiorecoress (79.31% of correct and 20.69%
of partly correct tracking). Though, a large objemtated in the field of interest causes an
incorrect tracking at the level of 66.66% which mskhe CamShift the worst algorithm to
work with large extraneous objects.

The OF did not manage to track the object all imet The tracked point moved from the
red rat to the white one during the body contaas$mg by) and remained there for the rest of
time. Two values for Atc and Atp stand for trackihg red and the white rat respectively (the
percentage of the tracking time — about half of tibtal time). The OF algorithm is quite
effective in general correct tracking (62.92% &4d85%). However, after losing the tracked
point it is hard to recover. A small disturbing et and pixel values changes have no impact
on tracking (100% of correctness). A large distogbobject introduces errors in 27.78% of
cases.

The PF has the lowest level of correctness (38/dtbyjuite high partial recognition of the
object (53.51%) in general. Tracking with a largstutbing object is of 50% of correctness
and only 25% of failure. A low value of the properhnalyzed recording with small
disturbances (15.22%) is not a result of thoseudbsinces but of the body contact of the two
objects, which is proven by the high value of atlpgrroper analysis (84.78%). Also pixel
value changes perturb correct working of the PFhowt{0% of correct and 100% of partly
proper tracking).

According to the outcomes, the most resistive tgdalisturbing objects is the algorithm of
the AC (72.22%). The insusceptibility to small dittances is also at a high level (86.96%).
However, pixel value change is a factor that hgeeat impact on tracking (0% of correct and
100% of partly proper tracking). A general leveltafcking comes to 48.88% for the correct
analysis and 47.44% of partially proper tracking.
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Table 9. Values of parameters of analysis durisgudbances for all algorithms

Parameters [%] CamsShift OF PF AC
Atc 91.37 62.92 / 84.85 38.5 48.88
Atp 4.79 14.29/0 53.51 47.44
Ad;c 16.67 0 50 72.22
Ad,c 100 100 15.22 86.96
Adsc 79.31 100 0 0
Adip 16.67 72.22 25 5.56
Adyp 0 0 84.78 13.04
Adzp 20.69 0 100 100

3.8. Time and grade of recovering from occlusion

Table 10 illustrates abilities to recover from astbn for all the tracking methods. The
CamsShift demonstrates the best properties of bbggeval. It took 0.3s to find the whole
body of the object. What is important, 0.3s istihge of side exposure, which means that the
whole object was found by the CamShift in the firatne it appeared. The CamShift recovers
in no time at all (Os is needed to find 50% of dbgect body — the stage of side exposure).

Completely different results were estimated for @fe It lost the rat in the third phase of
covering and never tracked it down again (all poofttracking moved to the white rat).

The PF and the AC have similar values of the disetiparameters. They fully recovered
after almost 5 s. (4.97s — particle filtering anBis4— active contours) — after body separation,
and found about a half of the object for the fiiste after 0.4s and 0.43s. — during the last
phase of covering.

Table 10. Values of time and grade of recoveringafbalgorithms

CamShift| OF PF AC
Time of recovering to completely correct trackiisg [ 0.3 - 4.97 4.5
First correct Time of recovering to first correct object detent]g] 0 - 0.43 0.4
object detection| Grade of recovering [%] 50 - 50 40
4. Discussion

This article presents the results of testing foacking algorithms working under different
conditions. Experiments were conducted with respecan analysis of social interaction
behavior of two rats.

The first test revealed that a poorly lighted imagenuch more easy to analyze than a
lightsome one. Reflections of the objects in thasglwalls cause more problems than dim
images. Bright light had also an enormous influemrtghe rats behaviour. Rodents, nocturnal
animals, perceive the lighted surrounding as assfiné environment and, therefore, act
unnaturally. If there is a need to conduct expenitsién bright light, non-reflective materials
should be used for building the cage for animals.

The next analyzed feature was sensitivity to thwrad frames frequency. Each algorithm
was tested for five recordings of: 30, 15, 10, 8 arb frames per second. The more similar
the results, the smaller the sensitivity and bettedti-purpose usage. The most equal
outcomes were achieved by the Active Contours. vidige of the frame rate has no impact
on working of this method. Also the algorithm ofetiCamShift is quite resistant to the
different frames frequency, except the 2.5fps fezmy. The lowest value seems not enough
for tracking the objects by the CamsShift, it soormets differs from other results (especially in
width and height of the tracked area). The divecgebetween the outcomes of a tracking
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point by the Optical Flow is greater than trackihg centre of the area by the CamShift (from
5.68% to 8.85%) but not as appreciable as one csufigbose. A low frame rate of the
recording is a failure to keep one of the optidavfassumptions. Decrementing the number
of frames per second increases at the same tinradghien between the two following frames.
According to the condition for smooth variationtbe brightness velocity of an image, the
results of tracking should be very different foifelient frame rate values. A small difference
between these results indicates that this condigiot essential for the concerned analysis or
that the range of the frame rate values was inctiyrselected.

One of the tests demonstrated that the CamShifksvimvariably during the analysis of
recording containing light changes. The Particleefhg and the Active Contours operate on
binary images for all frames achieved in the sanag,wvhich is the reason why those
algorithms detect the change of the light. Adaptiveshold is one of the ways to solve this
problem. The Optical Flow showed the worst propsttit lost all the tracked points at one
moment. The explanation for this may be relatedh® appearance of the two parallel
incidents: image highlighting and vigorous movemehthe objects. Those two events are
infringements of the optical flow assumptions: theghtness of each point does not change
in time and the velocity of brightness varies srhbot

Sometimes during recording of the experiment somgidhances of the recorded image
appear. The CamShift seems to have the best geakildles to cope with aberrations.
Though it lost the tracked area to the advantagenaéxtraneously large object, it recovered
very fast, in contrast to the optical flow whickrmanently lost all the tracked points after the
body-nose contact with another rat. The advantdgecking by the Optical Flow is the lack
of any influence on proper tracking while the dibance is not close to the tracked point, and
the low sensitivity to pixel value changes. Thetielr Filtering and the Active Contours only
partially identify objects correctly during pixelbles changes, but quite well manage to
distinguish large disturbance from the object ¢éiiast.

The last tests were made to verify the abilitiesecovering from occlusion. The best
results were again achieved by CamsShift, it recevgust the time of the object
reappearance. The Optical Flow did not manageciover at all. The Particle Filtering and
the Active Contours needed some time to recaph@®lject.

5. Conclusion

The research made for needs of this article cgmihedelecting the best tracking algorithm
for specific experimentation. It also gives infotina about conditions that are the most
suitable or which may disturb the operation by eacbthod. Being aware of all the
algorithms’ weak points, a user can modify or cambthe selected methods to adapt them to
specific requirements.
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